Saccharomyces cerevisiae strain improvement using selection, mutation, and adaptation for the resistance to lignocellulose-derived fermentation inhibitor for ethanol production.
نویسندگان
چکیده
Twenty-five Saccharomyces cerevisiae strains were screened for the highest sugar tolerance, ethanol-tolerance, ethanol production, and inhibitor resistance, and S. cerevisiae KL5 was selected as the best strain. Inhibitor cocktail (100%) was composed of 75 mM formic acid, 75 mM acetic acid, 30 mM furfural, 30 mM hydroxymethyl furfural (HMF), and 2.7 mM vanillin. The cells of strain KL5 were treated with γ-irradiation, and among the survivals, KL5- G2 with improved inhibitor resistance and the highest ethanol yield in the presence of inhibitor cocktail was selected. The KL5-G2 strain was adapted to inhibitor cocktail by sequential transfer of cultures to a minimal YNB medium containing increasing concentrations of inhibitor cocktail. After 10 times of adaptation, most of the isolated colonies could grow in YNB with 80% inhibitor cocktail, whereas the parental KL5 strain could not grow at all. Among the various adapted strains, the best strain (KL5-G2-A9) producing the highest ethanol yield in the presence of inhibitor cocktail was selected. In a complex YP medium containing 60% inhibitor cocktail and 5% glucose, the theoretical yield and productivity (at 48 h) of KL5- G2-A9 were 81.3% and 0.304 g/l/h, respectively, whereas those of KL5 were 20.8% and 0.072 g/l/h, respectively. KL5-G2-A9 reduced the concentrations of HMF, furfural, and vanillin in the medium in much faster rates than KL5.
منابع مشابه
Characterization of an Interesting Novel Mutant Strain of Commercial Saccharomyces cerevisiae
The yeast strains that are resistant to high concentration of ethanol have biotechnological benefits and aresuitable models for physiology and molecular genetics research fields. A novel ethanol-tolerant mutant strain,mut1, derived from the commercial Saccharomyces cerevisiae showed higher ethanol production, and alsodemonstrated resistance to ethanol but not to other alcohols...
متن کاملCharacteristics of Different Brewerâs Yeast Strains Used for Non-alcoholic Beverage Fermentation in Media Containing Different Fermentable Sugars
Fermentation characteristics of four strains of brewer's yeast (Saccharomyces cerevisiae strain 70424, S.rouxii strain 2535, S. rouxii strain 2531 and Saccharomyces ludwigii strain 3447) in Yeast Moldbrothcontaining four different fermentable sugars (glucose, fructose, maltose, or sucrose) were studied. Theaim was to consider the suitability of different strain/sugar treatment...
متن کاملDevelopment on ethanol production from xylose by recombinant Saccharomyces cerevisiae
Xylose is the second major fermentable sugar present in lignocellulosic hydrolysates, so its fermentation is essential for the economic conversion of lignocellulose to ethanol. However, the traditional ethanol production strain Saccharomyces cerevisiae does not naturally use xylose as a substrate. A number of different approaches have been used to engineer yeasts to reconstruct the gene backgro...
متن کاملCombining inhibitor tolerance and D-xylose fermentation in industrial Saccharomyces cerevisiae for efficient lignocellulose-based bioethanol production
BACKGROUND In addition to efficient pentose utilization, high inhibitor tolerance is a key trait required in any organism used for economically viable industrial bioethanol production with lignocellulose biomass. Although recent work has succeeded in establishing efficient xylose fermentation in robust industrial Saccharomyces cerevisiae strains, the resulting strains still lacked sufficient in...
متن کاملDevelopment of a Saccharomyces cerevisiae strain with enhanced resistance to phenolic fermentation inhibitors in lignocellulose hydrolysates by heterologous expression of laccase.
To improve production of fuel ethanol from renewable raw materials, laccase from the white rot fungus Trametes versicolor was expressed under control of the PGK1 promoter in Saccharomyces cerevisiae to increase its resistance to phenolic inhibitors in lignocellulose hydrolysates. It was found that the laccase activity could be enhanced twofold by simultaneous overexpression of the homologous t-...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of microbiology and biotechnology
دوره 24 5 شماره
صفحات -
تاریخ انتشار 2014